Responsive image





Introducing Artificial Neural Networtks to predict the dimensional and micro-geometrial deviations of additively manufactured parts

Vendittoli, Valentina; Polini, Wilma; Walter, Michael S. J.; Geißelsöder, Stefan (2024)

Procedia CIRP 129, S. 181-186.
DOI: 10.1016/j.procir.2024.10.032


Open Access Peer Reviewed
 

The dependencies between process parameters and the resulting geometrical accuracy of additively manufactured parts are usually highly non-linear and thus complex to investigate and mathematically quantify. Therefore, the application of artificial intelligence techniques is promising to generate mathematical models that reduce effort and increase the prediction quality. The overall goal is to establish a procedure to automatically determine the optimal settings of the manufacturing process parameters to guarantee the highest geometrical accuracy of parts in additive manufactured production. This paper presents the first step towards this fully automatic procedure – the training and evaluation of a mathematical model based on artificial neural networks to quantify the effects of varying process parameters of a material extrusion process on both macro- and micro-geometrical performances. Therefore, a dataset is established based on the Design of Experiment of an additively manufactured part made from Polylactic Acid filament. The dataset is then used to train an artificial neural network that predicts the dimensional and micro-geometrical deviations of the manufactured parts. Finally, the evaluation of the network's prediction quality and reliability indicate that it is possible to predict the parameters linked to resulting print quality with a mean absolute error from 0.0004 to 0.036.

mehr

Using Bayesian Regularized Artificial Neural Networks to Predict the Tensile Strength of Additively Manufactured Polylactic Acid Parts

Vendittoli, Valentina; Polini, Wilma; Walter, Michael S. J.; Geißelsöder, Stefan (2024)

Applied Sciences 14, 3184 (8).
DOI: 10.3390/app14083184


Open Access Peer Reviewed
 

Additive manufacturing has transformed the production process by enabling the construction of components in a layer-by-layer approach. This study integrates Artificial Neural Networks to explore the nuanced relationship between process parameters and mechanical performance in Fused Filament Fabrication. Using a fractional Taguchi design, seven key process parameters are systematically varied to provide a robust dataset for model training. The resulting model confirms its accuracy in predicting tensile strength. In particular, the mean squared error is 0.002, and the mean absolute error is 0.024. These results significantly advance the understanding of 3D manufactured parts, shedding light on the intricate dynamics between process nuances and mechanical outcomes. Furthermore, they underscore the transformative role of machine learning in precision-driven quality prediction and optimization in additive manufacturing.

mehr

Kopplung von KI, Strömungssimulation und Strömungsmessung

Zacharias, Konstantin; Welsch, Dennis; Geißelsöder, Stefan; Buchele, Alexander (2023)

mfund Konferenz 2023, Berlin.



Signal analysis and classification of interictal epileptiform discharges from EEG with machine learning

Stiehl, Annika; Geißelsöder, Stefan; Anselstetter, Fabienne; Bornfleth, Harald...

BMT 2023, 26.09. - 28.09.2023, Duisburg.
DOI: 10.1515/bmte-2023-2001


Peer Reviewed
mehr

Topological Analysis of Low Dimensional Phase Space Trajectories of High Dimensional EEG Signals For Classification of Interictal Epileptiform Discharges

Stiehl, Annika; Flammer, M; Anselstetter, Fabienne; Ille, Nicole; Bornfleth, Harald...

2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW), Rhodes Island, Greece, S. 1-5.
DOI: 10.1109/ICASSPW59220.2023.10193167


Peer Reviewed
mehr

Industrielle Anwendungen

Geißelsöder, Stefan (2023)

Knowledge Science – Fallstudien. Springer Vieweg, Wiesbaden, S. 193-205.
DOI: 10.1007/978-3-658-41155-8_9


mehr

Different montages and dimension reduction methods for EEG signal analysis of Interictal Epileptic Discharges

Stiehl, Annika; Anselstetter, Fabienne; Ille, Nicole; Bornfleth, Harald...

Abstracts of the 2022 Joint Annual Conference of the Austrian (ÖGBMT), German (VDE DGBMT) and Swiss (SSBE)Societies for Biomedical Engineering 67 (S1), S. 88.
DOI: 10.1515/bmt-2022-2001


Open Access Peer Reviewed
mehr

Dimension reduction methods, persistent homology ans machine learning for EEG signal analysis of Interictal Epileptic Discharges

Stiehl, Annika; Geißelsöder, Stefan; Ille, Nicole; Anselstetter, Fabienne...

Proceedings of the Workshop Biosignale 2022 (24. - 26.08.2022).
DOI: 10.48550/arXiv.2502.12814


Peer Reviewed
mehr

On the intelligence of interacting autonomous robots and agents

Geißelsöder, Stefan (2022)

4th International Conference Business Meets Technology 2022.
DOI: 10.4995/BMT2022.2022.15555


Open Access
mehr

ExDRa: Exploratory Data Science on Federated Raw Data

Baunsgaard, Sebastian ; Boehm, Matthias ; Chaudhary , Ankit; Derakhshan, Behrouz ...

SIGMOD '21: Proceedings of the 2021 International Conference on Management of Data, S. 2450–2463.


Peer Reviewed
mehr

Vorrichtung und Verfahren zur Erkennung von Anomalien in einer industriellen Anlage zur Ausführung eines Produktionsprozesses

Geißelsöder, Stefan; Hitzel, Klaus-Peter; Dilek, Hakan; Hertlein, Christian Klaus...

Europäisches Patent. Internationale Veröffentlichungsnummer: WO2022/069258/A1.



Model-independent search for neutrino sources with the ANTARES neutrino telescope

Albert, A.; André, M.; Anghinolfi, M; Anton, G; Ardid, Miguel; Aubert, J.-J.; et al., ....

Astroparticle Physics 114, S. 35-47.
DOI: 10.1016/j.astropartphys.2019.06.003


Peer Reviewed
mehr

Characterisation of the Hamamatsu photomultipliers for the KM3NeT Neutrino Telescope

Aiello, S.; Akrame, S.E.; Ameli, F.; Anassontzis, E. G.; André, M; Androulakis, G....

Journal of Instrumentation 13, P05035.


Open Access Peer Reviewed
mehr

Deep Learning mit unbalancierten Datensätzen

Geißelsöder, Stefan (2018)

Verhandlungen der Deutschen Physikalischen Gesellschaft e.V.. Würzburg 2018.



A polarized fast radio burst at low Galactic latitude

Petroff, E.; Burke-Spolaor, S.; Keane, E. F.; McLaughlin, M. A.; Miller , R....

Monthly Notices of the Royal Astronomical Society 469 (4), S. 4465-4482.
DOI: 10.1093/mnras/stx1098


Open Access Peer Reviewed
mehr

Results from the search for dark matter in the Milky Way with 9 years of data of the ANTARES neutrino telescope

Albert, A.; André, M.; Anghinolfi, M; Anton, G; Ardid, Miguel; Aubert, J.-J.; et al., ....

Physics Letters B 769, S. 249-254.


Peer Reviewed
mehr

Time-dependent search for neutrino emission from X-ray binaries with the ANTARES telescope

Albert, A.; André, M; Anton, G; Ardid, Miguel; Aubert, J.-J.; Avgitas, T.; et al., ....

Journal of Cosmology and Astroparticle Physics 04(2017), 019.
DOI: 10.1088/1475-7516/2017/04/019


Peer Reviewed
mehr

Search for high-energy neutrinos from bright GRBs with ANTARES

Albert, A.; André, M.; Anghinolfi, M; Anton, G; Ardid, Miguel; Aubert, J.-J.; et al., ....

Monthly Notices of the Royal Astronomical Society 469 (1), S. 906-915.
DOI: 10.1093/mnras/stx902


Peer Reviewed
mehr

Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope

André, M.; Caballé, A.; van der Schaar, M.; Solsona Berga, Alba; Houegnigan, Ludwig...

Scientific Reports 7, 45517.
DOI: 10.1038/srep45517


Open Access Peer Reviewed
mehr

Deep Learning für Neutrinoteleskope

Geißelsöder, Stefan (2017)

Verhandlungen der Deutschen Physikalischen Gesellschaft e.V.. Münster 2017.