Dynamical Component Analysis zur Analyse hochdimensionaler Zeitreihen. Teilprojekt 1 Hochschule Ansbach

Die Extraktion wesentlicher Inhalte aus riesigen Datenmengen ist eine der großen Herausforderungen in unterschiedlichsten wirtschaftlichen und gesellschaftlichen Bereichen. Das Projekt „Dynamical Component Analysis zur Analyse hochdimensionaler Zeitreihen“ erforscht die Analyse hochdimensionaler Zeitreihen und der Extraktion deterministischer Zusammenhänge mithilfe einer zu berechnenden Projektion in den relevanten nieder-dimensionalen Unterraum.

Das hierzu vor kurzem vorgeschlagene Verfahren, die Dynamical Component Analysis (DyCA), liefert die gesuchte Projektion nach Lösung eines verallgemeinerten Eigenwertproblems und der Auswahl der relevanten Eigenvektoren über Kriterien bzgl. der zugehörigen Eigenwerte.

Im Projekt erforschen die Julius-Maximilians-Universität Würzburg und die Hochschule Ansbach Grundlagen, Potenziale, Methoden und Grenzen der Anwendbarkeit des Verfahrens. DyCA kann perspektivisch in allen Anwendungsfeldern, die in Gebieten multivariater deterministischer Zeitreihen angesiedelt sind, Nutzen stiften. Mögliche Anwendungen können daher für so unterschiedliche Daten wie Wartungs- und Betriebsdaten, Wetterdaten über Strömungsdaten bis hin zu medizinischen Daten angesiedelt sein.

Im Vergleich zu etablierten Verfahren kann DyCA in geeigneten Anwendungen potenziell Zeit, Rechnerressourcen und somit Kosten sparen helfen. Zudem kann das Verfahren helfen, Daten einfacher zu visualisieren und so neue wissenschaftliche und technische Erkenntnisse ermöglichen.

Gemeinsam mit der BESA GmbH, Gräfelfing, wenden die Partner das Verfahren auf hochaufgelöste EEG-Daten für die medizinische Forschung und Diagnostik an. Eine weitere Musteranwendung ist auf dem Feld der Predictive Maintenance für Windkraftanlagen in Kooperation mit der Weidmüller Monitoring Systems GmbH.

Disentangling dynamic and stochastic modes in multivariate time series

Uhl, Christian; Stiehl, Annika; Weeger, Nicolas; Schlarb, Markus; Hüper, Knut (2024)

Frontiers in Applied Mathematics and Statistics 10-2024.
DOI: 10.3389/fams.2024.1456635


Open Access Peer Reviewed
mehr

Cost Function Approach for Dynamical Component Analysis: Full Recovery of Mixing and State Matrix

Hüper, Knut; Schlarb, Markus; Uhl, Christian (2024)

Automation 2024, 5(3) | 360-372.
DOI: 10.3390/automation5030022


Open Access Peer Reviewed
 

A reformulation of the dynamical component analysis (DyCA) via an optimization-free approach is presented. The original cost function approach is converted into a numerical linear algebra problem, i.e., the computation of coupled singular-value decompositions. A simple algorithm is presented together with numerical experiments to document the feasability of the approach. This methodology is able to recover the mixing and state matrices of multivariate signals from high-dimensional measured data fully.

mehr

Dynamical Component Analysis: Updated and improved algorithm, applications, and limitations

Warmuth, Monika; Romberger, Philipp; Hüper, Knut; Uhl, Christian (2022)

Vortrag auf der International Conference on Time Series and Forecasting (ITISE) 2022, Gran Canaria, Spanien 2022.


Peer Reviewed

Dimensionsreduktion von EEG-Daten mit Dynamical Component Analysis (DyCA)

Kern, Moritz; Korn, Katharina; Uhl, Christian (2020)

Workshop Biosignale 2020. Kiel, 11.03.2020.



Subspace Detection and Blind Source Separation of Multivariate Signals by Dynamical Component Analysis (DyCA)

Uhl, Christian; Kern, Moritz; Warmuth, Monika; Seifert, Bastian (2020)

IEEE Open Journal of Signal Process 1, 230-241.


Open Access Peer Reviewed
mehr

Dimension reduction methods: Principle Component Analysis (PCA), Dynamical Systems Based Modeling (DSBM) and Dynamical Component Analysis (DyCA)

Frühauf, Christine; Kern, Moritz; Korn, Katharina; Uhl, Christian (2020)

Ansbacher Kaleidoskop 2020. Düren: Shaker Verlag (campus_edition Hochschule Ansbach) 2020, 192-209.


Open Access

Dimension reduction methods: Principle Component Analysis (PCA), Dynamical Systems Based Modeling (DSBM) and Dynamical Component Analysis (DyCA)

Uhl, Christian (2019)

Workshop on Applied Mathematics - Dynamical Systems. IT4Innovations National Supercomputing Center. Technical University of Ostrava, 01.10.2019.



Applications of DyCA

Kern, Moritz (2019)

Workshop on Applied Mathematics - Dynamical Systems. IT4Innovations National Supercomputing Center. Technical University of Ostrava, 01.10.2019.



An Application of Spatiotemporal Persistence Landscapes and Dimension Reduction Techniques to EEG Data

Flammer, M (2025)

In: Aguiar, A.P., Rocha Malonek, P., Pinto, V.H., Fontes, F.A.C.C., Chertovskih, R. (eds) CONTROLO 2024. CONTROLO 2024. Lecture Notes in Electrical Engineering, vol 1325. Springer, Cham 2025.
DOI: 10.1007/978-3-031-81724- 3_28


Peer Reviewed
 

In this paper, we show an application of spatiotemporal persistence landscapes to real world time series. Spatiotemporal persistence landscapes are a recent extension of persistence landscapes to time series that capture features of the data that are persistent with respect to time and space. We perform our analysis on EEG data to detect absence epileptic seizures. Further, we compare two dimension reduction techniques (DyCA and PCA) with no dimension reduction and show that the combination of DyCA and persistent landscapes yields the best results.

mehr

A Family of Metrics and Quasi-geodesics on the Manifold of Essential Matrices

Schlarb, Markus (2025)

In: Aguiar, A.P., Rocha Malonek, P., Pinto, V.H., Fontes, F.A.C.C., Chertovskih, R. (eds) CONTROLO 2024. CONTROLO 2024. Lecture Notes in Electrical Engineering, vol 1325. Springer, Cham 2025.
DOI: 10.1007/978-3-031-81724-3_16


Peer Reviewed
 

The manifold of essential matrices is equipped with a one-parameter family of (pseudo-)Riemannian metrics. For the whole family, explicit formulas for geodesics are derived. Moreover, specific curves, so-called quasi-geodesics, are studied and a closed form expression for a quasi-geodesic connecting two given essential matrices is obtained.

mehr

Comparison of Mode Selection and Reconstructions Obtained by DyCA and DMD with Respect to Noise Robustness and Sampling

Stiehl, Annika; Weeger, Nicolas; Uhl, Christian (2025)

In: Aguiar, A.P., Rocha Malonek, P., Pinto, V.H., Fontes, F.A.C.C., Chertovskih, R. (eds) CONTROLO 2024. CONTROLO 2024. Lecture Notes in Electrical Engineering, vol 1325. Springer 2025.
DOI: 10.1007/978-3-031-81724-3_23


Peer Reviewed
 

Dynamical Component Analysis (DyCA) and Dynamic Mode Decomposition (DMD), both data-driven dimension reduction methods, are introduced. After application to multivariate simulated signals the techniques of mode selection and the resulting amplitudes are compared with respect to noise robustness and sampling periods. The results indicate that DyCA is a useful alternative to DMD and outperforms DMD under certain conditions. These conditions are based on the underlying dynamics in the terms of differential equations and on the noise ratios of the signals.

mehr

Comparison of Classical EEG Source Analysis with Deep Learning

Winkler, Jakob; Uhl, Christian; Geißelsöder, Stefan; Erdbrügger, Tim...

In: Aguiar, A.P., Rocha Malonek, P., Pinto, V.H., Fontes, F.A.C.C., Chertovskih, R. (eds) CONTROLO 2024. CONTROLO 2024. Lecture Notes in Electrical Engineering, vol 1325. Springer 2025.
DOI: 10.1007/978-3-031-81724-3_24


Peer Reviewed
 

This paper discusses the challenges and methods for source reconstruction of evoked potentials using deep learning in the context of electroencephalography (EEG). We propose the use of deep learning to address known challenges and improve traditional approaches. We explain the creation of a suitable dataset for solving the inverse problem, including the simulation of neural activity and the use of lead field matrices for the forward solution. Furthermore, we undertake a comparative analysis of some initial deep learning models with similar classical methods.

mehr

DyCA and DMD: Differences and Similarities in Theory and Application

Uhl, Christian; Stiehl, Annika; Weeger, Nicolas (2024)

SIAM Conference on Mathematics of Data Science (MDS24) 2024.


Peer Reviewed

Robust Dynamical Component Analysis and its Application on Epileptic EEG and Motion Sense Data

Warmuth, Monika; Romberger, Philipp; Uhl, Christian; Hüper, Knut (2022)

Proceedings of the Workshop Biosignal 2022, August 24th - 26th, Dresden.



A Matrix Formulation of Dynamical Component Analysis (DyCA)

Romberger, Philipp; Warmuth, Monika; Uhl, Christian; Hüper, Knut (2022)

Proceedings of the Workshop Biosignal 2022, August 24th - 26th, Dresden .



Dynamical Component Analysis: Matrix Case and Differential Geometric Point of View

Romberger, Philipp; Warmuth, Monika; Uhl, Christian; Hüper, Knut (2022)

CONTROLO 2022. Lecture Notes in Electrical Engineering 930, 385-394.
DOI: 10.1007/978-3-031-10047-5_34


Peer Reviewed
mehr

A Comparative Study of Dynamic Mode Decomposition (DMD) and Dynamical Component Analysis (DyCA)

Kern, Moritz; Uhl, Christian; Warmuth, Monika (2021)

CONTROLO 2020. Lecture Notes in Electrical Engineering 695, 93-103.
DOI: 10.1007/978-3-030-58653-9_9


Peer Reviewed
mehr

Dynamical Component Analysis (DYCA) and Its Application on Epileptic EEG

Korn, Katharina; Seifert, Bastian; Uhl, Christian (2019)

2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings. Brighton, UK, 12.-17.05.2019. Piscataway, NJ: IEEE, 1100-1104.
DOI: 10.1109/ICASSP.2019.8682601


Open Access Peer Reviewed
mehr


Promotionen

Generalized Dynamical Component Analysis


Doktorand / Doktorandin Monika Warmuth
Forschungsschwerpunkt Smart & Green Engineering
Zeitraum 15.03.2024 - 15.06.2026
Wissenschaftlich betreuende Person HS Ansbach Prof. Dr. Christian Uhl
Einrichtung Hochschule Ansbach - Fakultät Technik
Wissenschaftlich betreuende Person (extern)
mehr

Verbundprojektleitung

Projektdauer

01.04.2020 - 31.03.2025

Projektpartner

Weidmüller Monitoring Systems GmbH
Julius-Maximilians-Universität Würzburg
BESA GmbH

Projektträger

Deutsches Elektronen-Synchrotron

Projektförderung

Bundesministerium für Bildung und Forschung

Förderprogramm

BMBF Mathematik für Innovationen

Adressierte SDGs (Sustainable Development Goals)