Responsive image





This is the way: An evidence based route to phytic-acid–based flame retardant poly (lactide acid)

Wagner, Jan; Dudziak, Mateusz; Falkenhagen, Jana; Rockel, Daniel; Reimann, Hans-Achim...

Conference Proceedings - 20th European Meeting on Fire Retardant Polymeric Materials (FRPM2025), Madrid Spanien 2025 (Volume 234,), 111242.
DOI: 10.1016/j.polymdegradstab.2025.111242


Peer Reviewed
 

A systematic sequence of materials was investigated to develop phytic-acid (Phyt)–based flame retarded poly (lactide acid) (PLA), while factoring in molecular weight (MW), crystallinity and mechanical properties. Synergistic approaches were developed based on combinations with lignin and expandable graphite (EG), as well as by applying different Phyt salts of melamine (Mel), piperazine (Pip), and arginine (Arg). Compounds were twin screw extruded, injection molded, hot pressed and investigated with thermal analysis, size exclusion chromatography, infrared spectroscopy, tensile testing, limited oxygen index (LOI), UL 94, cone calorimeter, and scanning electron microscope. 16.7 wt.% flame retardant (FR) slightly enhances crystallization while MW remains unchanged in PLA Phyt Arg and PLA Phyt Mel. LOI was improved to 43.7 vol.% for PLA Phyt Arg, UL 94 V0 achieved for PLA Phyt Pip. Cone calorimeter results show total heat evolved reduced by 14 %, maximum average rate of heat emission 43 % lower, and peak heat release rate reduced by 50 % for PLA Phyt Mel. Phyt Mel combined with EG increased the char yield of PLA to 20 wt.% and 15.5 wt.% at 600 and 900 ◦C, respectively. Phyt is exploited to enhance char yield, stabilize the intumescent char, and lower the apparent effective heat of combustion. The combination of Phyt Mel and EG was proposed as an efficient FR for PLA via an evidence based developing route.

mehr

Multimodal micro- and nanoplastics analytics in plant matrix, BPS2024

Wissler, J.; Häfner, Philipp; Reimann, Hans-Achim (2025)

Biophysical Journal 2024 (123), 3 | 419a.
DOI: 10.1016/j.bpj.2023.11.2551


Peer Reviewed
 

Plastics components are degrading over time to small entities mostly known as microplastics (MP). Microplastics particles (MPPs) (by definition <5 mm) can enter the human food chain on different levels. MPPs have been found in several organisms and human heart tissue. MPPs also occur in the plant world. MPPs can be analyzed by light microscopy (LM). The different MP hydrocarbons distinguish from biomaterial matrices. But the degradation doesn’t stop. Microplastics can degrade further to nanoparticles (NPs), being smaller than cells. These nanoplastics particles (NPPs) require higher efforts to be detected. Electron microscopy (EM) is suitable to depict those nanoscale regions. Metal nanoparticles (MNPs) are often well visible in bulk biomaterial with scanning electron microscopy (SEM). But polymeric nanoparticles (PNPs) are more difficult to be detected in biomaterials than MNPs. Dependent on experiment and imaging conditions, PNPs can be distinguished from bulk biomaterial with SEM. Thus, we approach this issue with correlative microscopy (CM) to develop reliable NPP analytics. Using a plant model system with PNPs, combining LM and fluorescence microscopy (FM) with SEM data in a correlative light and electron microscopy (CLEM) approach, non-uniform patch formation of NPPs in- and outside the biomaterial matrix is observed. Energy-dispersive X-ray spectroscopy (EDS), Raman, micro-computer tomography (uCT), ultramicrotomy (UM) and focused ion beam (FIB) data provide additional information. Specific discovery of contaminated plant biomaterial areas is thus possible with single NP resolution. The investigation of the biomaterial matrix behaviour exposed to different PNP sizes and materials is so enabled. The procedural correlative microscopy approach reveals that PNPs seem to be tightly attached to the biomaterial. It indicates further that basic food cleaning procedures might be insufficient for PNP or NPPs removal. The model system can reliably detect PNPs, showing solution pathways in general NPPs analytics.

mehr

This is the way: An evidence based route to phytic-acid–based flame retardant poly (lactide acid)

Wagner, Jan; Dudziak, Mateusz; Falkenhagen, Jana; Rockel, Daniel; Reimann, Hans-Achim...

Polymer Degradation and Stability 2025 (234), 111242.
DOI: 10.1016/j.polymdegradstab.2025.111242


Open Access Peer Reviewed
 

A systematic sequence of materials was investigated to develop phytic-acid (Phyt)–based flame retarded poly(lactide acid) (PLA), while factoring in molecular weight (MW), crystallinity and mechanical properties. Synergistic approaches were developed based on combinations with lignin and expandable graphite (EG), as well as by applying different Phyt salts of melamine (Mel), piperazine (Pip), and arginine (Arg). Compounds were twin screw extruded, injection molded, hot pressed and investigated with thermal analysis, size exclusion chromatography, infrared spectroscopy, tensile testing, limited oxygen index (LOI), UL 94, cone calorimeter, and scanning electron microscope. 16.7 wt.% flame retardant (FR) slightly enhances crystallization while MW remains unchanged in PLA Phyt Arg and PLA Phyt Mel. LOI was improved to 43.7 vol.% for PLA Phyt Arg, UL 94 V0 achieved for PLA Phyt Pip. Cone calorimeter results show total heat evolved reduced by 14 %, maximum average rate of heat emission 43 % lower, and peak heat release rate reduced by 50 % for PLA Phyt Mel. Phyt Mel combined with EG increased the char yield of PLA to 20 wt.% and 15.5 wt.% at 600 and 900 °C, respectively. Phyt is exploited to enhance char yield, stabilize the intumescent char, and lower the apparent effective heat of combustion. The combination of Phyt Mel and EG was proposed as an efficient FR for PLA via an evidence based developing route.

mehr

Pressebericht des BR zur iENA Erfindermesse 2024 und der dort präsentierten Erfindung "BioSpalt"

Reimann, Hans-Achim; Häfner, Philipp (2024)

https://www.ardmediathek.de/video/br24/iena-erfindermesse-in-nuernberg/br/Y3JpZDovL2JyLmRlL2Jyb2FkY2FzdFNjaGVkdWxlU2xvdC80MTA2NDU1Mjc4MTNfRjIwMjNXTzAxMzMxNkEwL3NlY3Rpb24vNWEwODc2ODctYzg2Ni00YjA0LWE0ZmEtMDJjMTcyZjEwNGU3.


mehr

Goldmedaille der Erfindermesse iENA für die Erfindung „BioSpalt“

Reimann, Hans-Achim; Häfner, Philipp (2024)

iENA 2024 - Internationale Fachmesse Ideen • Erfindungen • Neuheiten.


mehr

China Association of Inventions (CAI) Award “Invention &für die Erfindung „BioSpalt“

Reimann, Hans-Achim; Häfner, Philipp (2024)

Verliehen durch die China Association of Inventions im Rahmen der iENA 2024 - Internationale Fachmesse Ideen • Erfindungen • Neuheiten.


mehr

Goldmedaille der Erfindermesse iENA für die Erfindung „BioSpalt“

Reimann, Hans-Achim; Häfner, Philipp (2023)

iENA 2023 - Internationale Fachmesse Ideen • Erfindungen • Neuheiten.



Micro- and nanoplastic contamination detection in plant samples by correlative microscopy

Wissler, J.; Häfner, Philipp; Aberle, A.; Lörler, Nadine; Mamdouh, D.; Szwajgier, D....

Proceedings Microscopy Conference 2023, Darmstadt 2023, LS5.P005.
DOI: 10.5283/epub.54367


Open Access Peer Reviewed
mehr

Correlative microscopy approach for micro- and nanoplastics detection in plant matrix

Wissler, J.; Häfner, Philipp; Szwajgier, D.; Reimann, Hans-Achim (2023)

Biophysical Journal 2023 (122), 3 | 543a-544a.
DOI: 10.1016/j.bpj.2022.11.2878


Peer Reviewed
mehr

Determination of micro- and nano-plastics contamination in plant samples using correlative microscopy

Wissler, J.; Häfner, Philipp; Aberle, A.; Loerler, N.; Mamdouh, D.; Szwajgier, D....

21st International European Light Microscopy Initiative Meeting, ELMI2022, 7.-10.06.2022, Turku, Finland.



3D Druck aus dem REM – Micro to Macro

Häfner, Philipp; Ketterle, A.; Reimann, Hans-Achim (2022)

2. Posterpreis. 16. ThGOT und 13. Biomaterial-Kolloquium 2022. Innovent e.V., wissenschaftliches Poster.



Using wood as eco-friendly and biobased flame retardant for polymers?

Grunert, Stefanie; Schmidt, M; Reimann, Hans-Achim (2022)

TPE Magazine International 03/2022.



Spitzendesign für die Mikromanipulation von Mikroorganismen auf unterschiedlichen Oberflächen zur Adhäsionsbestimmung

Häfner, Philipp; Reimann, Hans-Achim (2017)

12. Thementage Grenz- und Oberflächentechnik mit 5. Optik-Kolloquium, 14. - 16. März 2017, Zeulenroda-Triebes. INNOVENT e.V..



Bestimmung bakterieller Haftkräfte durch gezielte Scherkrafteinwirkung

Reimann, Hans-Achim; Lohbauer, Kerstin; Häfner, Philipp; Stefani, Nathalie (2017)

Biospektrum 23 (2), 218-219.
DOI: 10.1007/s12268-017-0786-4


mehr

Bakterielle Haftkraft - Wie man einzelnen Bakterien an den Kragen geht...

Reimann, Hans-Achim; Stefani, Nathalie; Bogendörfer, Kerstin; Häfner, Philipp (2016)

GIT Labor-Fachzeitschrift (5), 34-37.



Wie misst man die Haftkraft kleinster Lebewesen?

Reimann, Hans-Achim; Stefani, Nathalie; Lohbauer, Kerstin; Häfner, Philipp (2016)

Galvanotechnik 107 (3), 574-579.



Primäre Adhäsion von Bakterien auf plasmamodifizierten Kunststoffoberflächen

Bogendörfer, Kerstin; Stefani, Nathalie; Häfner, Philipp; Reimann, Hans-Achim (2015)

11. ThGOT Thementage Grenz- und Oberflächentechnik und 10. Thüringer Biomaterial-Kolloquium, 15. - 17. September 2015, Zeulenroda-Triebes. INNOVENT e.V..



Validierung der bakteriellen Haftkraft auf Kunststoffoberflächen

Häfner, Philipp; Reimann, Hans-Achim (2015)

2.Posterpreis. 11. ThGOT Thementage Grenz- und Oberflächentechnik und 10. Thüringer Biomaterial-Kolloquium, 15. – 17. September 2015, Zeulenroda-Triebes. INNOVENT e.V..



Primary Adhesion of E.coli JM109 and Adhesive Behaviour on Plasma Modified Polycarbonate

Stefani, Nathalie; Bogendörfer, Kerstin; Häfner, Philipp; Reimann, Hans-Achim (2015)

Applied Research Conference 2015. ARC 2015. Nürnberg, 03.07.2015. Berlin: Pro Business.



Plasma cleaning of plastic parts that are contaminated with a fluorine containing residue of the production process

Andexinger, Christian; Häfner, Philipp; Reimann, Hans-Achim (2015)

Applied Research Conference 2015. ARC 2015, Nürnberg. Berlin: Pro Business, 329-334.



Prof. Dr. Hans-Achim Reimann


Hochschule Ansbach

Hochschule Ansbach - Fakultät Technik
Residenzstr. 8
91522 Ansbach

T +49 981 4877-307
areimann[at]hs-ansbach.de